Error Correction Coding: Mathematical Methods and Algorithms

Providing in-depth treatment of error correction Error Correction Coding: Mathematical Methods and Algorithms, 2nd Editionprovides a comprehensive introduction to classical and modern methods of error correction.The presentation provides a clear, practical introduction to using a lab-oriented approach. Readers are encouraged to implement the encoding and decoding algorithms with explicit algorithm statements and the mathematics used in error correction, balanced with an algorithmic development on how to actually do the encoding and decoding. Both block and stream (convolutional) codes are discussed, and the mathematics required to understand them are introduced on a just-in-time basis as the reader progresses through the book. Thesecond edition increases the impact and reach of the book, updating it to discussrecent importanttechnological advances. New material includes: Extensive coverage of LDPC codes, including a variety of decoding algorithms. A comprehensive introduction to polar codes, including systematic encoding/decoding and list decoding. An introduction to fountain codes. Modern applications to systems such as HDTV, DVBT2, and cell phones Error Correction Codingincludesextensive program files (for example, C++ code for all LDPC decoders and polar code decoders), laboratory materials for students to implement algorithms,and an updated solutions manual, all of which are perfect to help the reader understand and retain the content. The book covers classical BCH,Reed Solomon,Golay, Reed Muller,Hamming,and convolutional codeswhich arestill component codes in virtually every modern communication system. There are also fulsome discussions ofrecently developed polar codes and fountain codesthat serve to educate the reader on the newest developments in error correction.
An unparalleled learning tool and guide to error correction coding

Error correction coding techniques allow the detection and correction of errors occurring during the transmission of data in digital communication systems. These techniques are nearly universally employed in modern communication systems, and are thus an important component of the modern information economy.

Error Correction Coding: Mathematical Methods and Algorithms provides a comprehensive introduction to both the theoretical and practical aspects of error correction coding, with a presentation suitable for a wide variety of audiences, including graduate students in electrical engineering, mathematics, or computer science. The pedagogy is arranged so that the mathematical concepts are presented incrementally, followed immediately by applications to coding. A large number of exercises expand and deepen students’ understanding. A unique feature of the book is a set of programming laboratories, supplemented with over 250 programs and functions on an associated Web site, which provides hands-on experience and a better understanding of the material. These laboratories lead students through the implementation and evaluation of Hamming codes, CRC codes, BCH and R-S codes, convolutional codes, turbo codes, and LDPC codes.

This text offers both “classical” coding theory-such as Hamming, BCH, Reed-Solomon, Reed-Muller, and convolutional codes-as well as modern codes and decoding methods, including turbo codes, LDPC codes, repeat-accumulate codes, space time codes, factor graphs, soft-decision decoding, Guruswami-Sudan decoding, EXIT charts, and iterative decoding. Theoretical complements on performance and bounds are presented. Coding is also put into its communications and information theoretic context and connections are drawn to public key cryptosystems.

Ideal as a classroom resource and a professional reference, this thorough guide will benefit electrical and computer engineers, mathematicians, students, researchers, and scientists.

Title: Error Correction Coding Mathematical Methods and Algorithms
Author:
ISBN: 0471648000,9780471648000
Publisher: John Wiley & Sons
Genre: Computers / Software Development & Engineering / General
Date Published:
Pages: 800
Preview Link: Google Preview Link

Leave a Comment